27 research outputs found

    Design of very compact Combline Band-Pass Filter for 5G applications

    Get PDF
    NoIn this paper, a compact microstrip band-pass filter (BPF) covering the 3.4 to 3.8 GHz spectrum bandwidth for 5G wireless communications is presented. The planar filter uses three resonators, each terminated by a via to hole ground at one end and a capacitor at the other end with 50 Ω transmission line impedances for input and output terminals. The coupling between the lines is adjusted to resonate at the centre frequency with third-order band-pass Butterworth properties. The proposed combline filter is designed on an alumina substrate with a relative dielectric constant of 9.8 and a very small size of 9×5×1.2 mm3. The proposed filter is simulated and optimized using CST microwave studio software.European Union’s Horizon 2020 research and innovation programme under grant agreement H2020-MSCA-ITN-2016 SECRET-722424, UK Engineering and Physical Sciences Research Council (EPSRC) under grant EP/E022936/

    A miniaturized triple-band antenna based on square split ring for IoT applications

    Get PDF
    YesThis article presents a miniaturized triple-band antenna for Internet of Things (IoT) applications. The miniaturization is achieved by using a split square ring resonator and half ring resonator. The antenna is fabricated on an FR4 substrate with dimensions of (33 × 22 × 1.6) mm3. The proposed antenna resonates at the frequencies 2.4 GHz, 3.7 GHz, and 5.8 GHz for WLAN and WiMax applications. The obtained −10 dB bandwidth for the three bands of the proposed antenna are 300 MHz, 360 MHz, and 900 MHz, respectively. The measured reflection coefficient values of the proposed antenna corresponding to each resonant frequency are equal to −14.772 dB, −20.971 dB, and −28.1755 dB, respectively. The measured gain values are 1.43 dBi, 0.89 dBi, and 1 dBi, respectively, at each resonant frequency. There is a good agreement between the measured and simulated results, and both show an omnidirectional radiation pattern at each of the antenna resonant frequencies that is suitable for IoT portable devices

    A New No Equilibrium Fractional Order Chaotic System, Dynamical Investigation, Synchronization and Its Digital Implementation

    Get PDF
    YesIn this paper, a new fractional order chaotic system without equilibrium is proposed, analyti-cally and numerically investigated, and numerically and experimentally tested. The analytical and numerical investigation were used to describe the system dynamical behaviors including, the system equilibria, the chaotic attractors, the bifurcation diagrams and the Lyapunov expo-nents. Based on the obtained dynamical behaviors, the system can excite hidden chaotic attrac-tors since it has no equilibrium. Then, a synchronization mechanism based on the adaptive con-trol theory has been developed between two identical new systems (master and slave). The adaptive control laws are derived based on synchronization error dynamics of the state varia-bles for the master and slave. Consequently, the update laws of the slave parameters are ob-tained, where the slave parameters are assumed to be uncertain and estimate corresponding to the master parameters by the synchronization process. Furthermore, Arduino Due boards were used to implement the proposed system in order to demonstrate its practicality in real-world applications. The simulation experimental results are obtained by MATLAB and the Arduino Due boards respectively, where a good consistent between the simulation results and the ex-perimental results. indicating that the new fractional order chaotic system is capable of being employed in real-world applications

    An investigation on the effects of beam squint caused by an analog beamformed user terminal utilizing antenna arrays

    Get PDF
    YesIn the equivalent frequency-based model, the antenna array gain is utilised to characterise the frequency response of the beam squint effect generated by the antenna array. This impact is considered for a wide range of uniform linear array (ULA) and uniform planar array (UPA) designs, including those with and without tapering configurations. For a closer look at how the frequency response of the array adapts to the variations in the incidence angle of the signal, the bandwidth of the spectrum is varied and investigated. To study this effect, we have considered using the gain array response as an equivalent channel model in our approach. Beam squinting caused by distortion in the frequency response gain can be verified by one of two equalisers: a zero-forcing (ZF) equaliser or a minimum mean square error (MMSE) equaliser. Different cases with their analysis and results are studied and compared in terms of coded and uncoded modulations.This work was supported in part by the Satellite Network of Experts V under Contract 4000130962/20/NL/NL/FE, and in part by the Innovation Program under Grant H2020-MSCA-ITN-2016 SECRET-722424

    A New Polarization-Reconfigurable Antenna for 5G Applications

    Get PDF
    YesThis paper presented a new circular polarization reconfigurable antenna for 5G wireless communications. The antenna, containing a semicircular slot, was compact in size and had a good axial ratio and frequency response. Two PIN diode switches controlled the reconfiguration for both the right-hand and left-hand circular polarization. Reconfigurable orthogonal polarizations were achieved by changing the states of the two PIN diode switches, and the reflection coefficient |S11| was maintained, which is a strong benefit of this design. The proposed polarization-reconfigurable antenna was modeled using the Computer Simulation Technology (CST) software. It had a 3.4 GHz resonance frequency in both states of reconfiguration, with a good axial ratio below 1.8 dB, and good gain of 4.8 dBic for both modes of operation. The proposed microstrip antenna was fabricated on an FR-4 substrate with a loss tangent of 0.02, and relative dielectric constant of 4.3. The radiating layer had a maximum size of 18.3 18.3 mm2, with 50 W coaxial probe feeding.European Union’s Horizon 2020 research and innovation programme under grant agreement H2020-MSCA-ITN-2016 SECRET-722424

    New Radiation Pattern-Reconfigurable 60-GHz Antenna for 5G Communications

    Get PDF
    Reconfigurable beam steering using circular disc microstrip patch antenna with a ring slot is proposed. The overall dimension of the antenna is 5.4 × 5.4 mm2 printed on 0.504 mm thick, RT5870 substrate with relative permittivity 2.3 and loss tangent 0.0012. The designed antenna operates at the expected 60 GHz 5G frequency band with a central coaxial probe feed. Two NMOS switches are utilized to generate three different beam patterns. Activating each switch individually results in a 70° shift in the main beam direction with constant frequency characteristics. The power gain is 3.9–4.8 dB in the three states of switch configurations. Simulated results in terms of return loss, peak gains and radiation pattern are presented and show good performance at the expected 60 GHz band for 5G applications

    Recent Progress in the Design of 4G/5G Reconfigurable Filters

    Get PDF
    YesCurrently, several microwave filter designs contend for use in wireless communications. Among various microstrip filter designs, the reconfigurable planar filter presents more advantages and better prospects for communication applications, being compact in size, light-weight and cost-effective. Tuneable microwave filters can reduce the number of switches between electronic components. This paper presents a review of recent reconfigurable microwave filter designs, specifically on current advances in tuneable filters that involve high-quality factor resonator filters to control frequency, bandwidth and selectivity. The most important materials required for this field are also highlighted and surveyed. In addition, the main references for several types of tuneable microstrip filters are reported, especially related to new design technologies. Topics surveyed include microwave and millimetre wave designs for 4G and 5G applications, which use varactors and MEMSs technologies.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement H2020-MSCA-ITN-2016 SECRET-722424
    corecore